Thursday, December 18, 2014

JRF-NET Physics Coaching

CSIR NET Coaching- KAS Institute, 11 Mile Jn., Cherthala, Kerala


Next batch starts on JAN 4, 2015  
Contact No. 9142020185

Saturday, October 18, 2014

What is Higg's Boson?




More than 50 years ago Peter Higgs and five other theoretical physicists proposed that an invisible field lying across the Universe gives particles their mass, allowing them to clump together to form stars and planets.

The Higgs field has been described as a kind of cosmic "treacle" spread through the universe.
According to Prof Higgs's 1964 theory, the field interacts with the tiny particles that make up atoms, and weighs them down so that they do not simply whizz around space at the speed of light.
But in the half-century following the theory, produced independently by the six scientists within a few months of each other, nobody has been able to prove that the Higgs Field really exists.
The name "Higgs Boson" name comes from 2 scientists. Peter Higgs (British) and Satendra Nath Bose from India (Calcutta)

Higgs seems to be taking away all the credit while we are forgetting Bose completely

Bosons (which are particles with integerspin, named after Bose), which was demonstrated to exist by experiment in 1995. Read more on Bose-Einstein condensate

The God particle was first discovered by Satendra Nath Bose. Einstein often systematically adopted Bose’s approach that is known as ‘Bose-Einstein Statistics’. Bose's Quantum Statistics has enabled many scientists to solve several problems scientifically and by cogent reasoning. Bose sent one paper to Einstein in 1926.The distinguished scientist was at a loss to understand how the solution offered by Bose could be used in Physics. Although Einstein published the article, he expressed his doubts. So Bose met him, discussed and they jointly worked on it.

The work done by Bose and Albert Einstein laid the foundation for the discovery of the God particle.

The recent discovery in CERN is more akin to Bose’s theory than Higgs’.  Higgs developed on the work of Bose. But the irony is, the whole world while referring to this particle often just say 'Higgs particle' to shorten it, which is not uncommon when one has to use the term several times while researching. But in the process 'Boson' gets lost. While writing in a widely read reputed paper like New York Times, I would like to take this opportunity to appeal that the credit should also be given to the person who has worked for a cause throughout his life, but the recognition always eluded him. As the father of the invention of the existence of God particle it should be named as 'Boson- Higgs' . Alphabetically also B comes before H. Will America and the western world consider it?

While paying tribute to Bose’s work, Paolo Giubellino, a CERN spokesperson, had said back in October last year, that “India is like a historic father of the project”.

Unfortunately due to poverty in those days Bose could not receive a formal degree or a doctorate, (studied on his own) therefore Nobel Prize committee did not think it was appropriate to award such an important Prize to a man who did not even have a proper doctorate, thinking that might under value "Nobel Prize" also as it was generally awarded to scientists of the west.

Fact is that Bose was real grand father of this theory. I wont take away the credit from him for what he contributed.  If there was no Bose, there would have been no Higgs Boson Theory!

Khalid Masood, China

Tuesday, October 07, 2014

നീല എല്‍.ഇ.ഡി. വികസിപ്പിച്ച മൂന്ന് ജപ്പാന്‍ വംശജര്‍ക്ക് ഭൗതികശാസ്ത്ര നൊബേല്‍


സ്റ്റോക്ക്‌ഹോം: നീല എല്‍.ഇ.ഡി. വികസിപ്പിച്ച ജപ്പാന്‍ വംശജരായ മൂന്ന് ഗവേഷകര്‍ക്ക് 2014 ലെ ഭൗതികശാസ്ത്ര നൊബേല്‍ ലഭിച്ചു. ജപ്പാന്‍ ഗവേഷകരായ ഇസാമു അകസാകി, ഹിരോഷി അമാനോ, യു.എസ്.ഗവേഷകനായ ഷുജി നകാമുറ എന്നിവരാണ് 6.6 കോടി പുരസ്‌കാരതുകയുള്ള സമ്മാനം പങ്കിട്ടത്.

'ഊര്‍ജക്ഷമതയേറിയ ശക്തിയേറിയ പ്രകാശസ്രോതസ്സ് എന്ന നിലയ്ക്ക് നീല ലൈറ്റ്-എമിറ്റിങ് ഡയോഡുകള്‍ ( blue LED ) വികസിപ്പിച്ചതിനാ'ണ് ഈ മൂന്ന് ഗവേഷകര്‍ നൊബേല്‍ പങ്കിടുന്നതെന്ന്, സ്വീഡിഷ് അക്കാദമി ഓഫ് സയന്‍സസിന്റെ വാര്‍ത്താക്കുറിപ്പ്അറിയിച്ചു.

മനുഷ്യവര്‍ഗത്തിന് ഏറ്റവുമധികം പ്രയോജനം ചെയ്യുന്ന കണ്ടെത്തലിന് നൊബേല്‍ പുരസ്‌കാരം നല്‍കണമെന്ന ആല്‍ഫ്രഡ് നൊബേലിന്റെ ആഗ്രഹം യാഥാര്‍ഥമാക്കുംവിധമാണ് ഇത്തവണ പുരസ്‌കാരം നല്‍കുന്നതെന്ന് നൊബേല്‍ കമ്മറ്റി പറയുന്നു.

1990 കളുടെ ആദ്യവര്‍ഷങ്ങളിലാണ് ഈ മൂന്ന് ഗവേഷകരും പുതിയ എല്‍.ഇ.ഡിക്ക് രൂപംനല്‍കിയത്. പ്രകാശ സാങ്കേതികവിദ്യയില്‍ മൗലിക മാറ്റം സൃഷ്ടിക്കുന്ന മുന്നേറ്റമായിരുന്നു അത്.

നിലവിലുണ്ടായിരുന്ന പച്ച, ചുവപ്പ് എല്‍.ഇ.ഡി.കളുമായി നീല വെളിച്ചം സമ്മേളിപ്പിച്ചാണ്, തീവ്രതയേറിയ പ്രകാശമുള്ള, അതേസമയം കുറച്ച് ഊര്‍ജം ചിലവാക്കുന്ന വൈദ്യുതവിളക്കുകള്‍ക്ക് രൂപംനല്‍കാന്‍ ഈ ഗവേഷകര്‍ക്ക് കഴിഞ്ഞത്.

ഇസാമു അകസാകി, ഹിരോഷി അമാനോ, ഷുജി നകാമുറ


മിക്കവരും പരാജയപ്പെട്ട ഒരു മേഖലയിലാണ് ഈ മൂന്നുപേരും വിജയം വരിച്ചതെന്ന് നൊബേല്‍ വാര്‍ത്താക്കുറിപ്പ് ചൂണ്ടിക്കാട്ടി. അകസാകി, അമാനോ എന്നിവര്‍ ജപ്പാനിലെ നഗോയാ സര്‍വകലാശാലയില്‍ സംയുക്തമായി നടത്തിയ ഗവേഷണമാണ് പുതിയ എല്‍.ഇ.ഡി.വികസിപ്പിക്കുന്നതിലേക്ക് നയിച്ചത്. നിചിയ കെമിക്കല്‍സ് എന്ന ചെറുകമ്പനിയില്‍ പ്രവര്‍ത്തിക്കുമ്പോഴാണ് നകാമുറ തന്റെ ഗവേഷണം നടത്തിയത്.

ഇരുപതാം നൂറ്റാണ്ടിന് വെളിച്ചംകാട്ടിയത് ഫിലമെന്റുപയോഗിച്ചുള്ള ലൈറ്റ് ബള്‍ബുകള്‍ ( Incandescent light bulbs ) ആയിരുന്നെങ്കില്‍, ഇരുപത്തിയൊന്നാം നൂറ്റാണ്ടിന് വെളിച്ചം നല്‍കുന്നത് എല്‍.ഇ.ഡി.ലൈറ്റുകളാണ്.

കൂടുതല്‍ പ്രകാശം കൂടിയ ആയുസ്സ്, എന്നാല്‍ കുറഞ്ഞ ഊര്‍ജോപയോഗം - ഇതാണ് എല്‍.ഇ.ഡി.ലൈറ്റുകളുടെ സവിശേഷത. ലോകത്താകെ ഉപയോഗിക്കുന്ന വൈദ്യുതിയില്‍ നാലിലൊന്ന് ഭാഗവും ലൈറ്റുകള്‍ കത്തിക്കാനാണ് ഉപയോഗിക്കുന്നത്. ആ നിലയ്ക്ക് ഊര്‍ജ്ജോപയോഗം കുറയ്ക്കുന്നതില്‍ എല്‍.ഇ.ഡി.ലൈറ്റുകളുടെ പങ്ക് വളരെ വലുതാണ്.

മാത്രമല്ല, എല്‍.ഇ.ഡി.ബള്‍ബുകള്‍ക്ക് ഒരു ലക്ഷം മണിക്കൂര്‍ വരെ ആയുസ്സുണ്ട്. അതേസമയം പഴയ വൈദ്യുതബള്‍ബുകള്‍ക്ക് ആയിരം മണിക്കൂറും ഫ് ളൂറസെന്റ് ലൈറ്റുകള്‍ക്ക് പതിനായിരം മണിക്കൂറുമാണ് ആയുസ്സ്. അതിനാല്‍, എല്‍.ഇ.ഡി.കള്‍ ഉപയോഗിക്കുന്നതാണ് നമ്മുടെ വിഭവങ്ങള്‍ ലാഭിക്കാനും പരിസ്ഥിതി സംരക്ഷിക്കാനും എന്തുകൊണ്ടും നല്ലത്.

1929 ല്‍ ജപ്പാനിലെ ചിറാനില്‍ ജനിച്ച അകസാകി 1964 ല്‍ നഗോയാ സര്‍വകലാശാലയില്‍ നിന്നാണ് പി.എച്ച്.ഡി.നേടിയത്. 1960 ല്‍ ജപ്പാനിലെ ഹമാമറ്റ്‌സുവില്‍ ജനിച്ച അമാനോയും നഗോയാ സര്‍വകലാശാലയില്‍നിന്നാണ് പി.എച്ച്.ഡി.നേടിയത്; 1989 ല്‍. ഇരുവരും ഇപ്പോള്‍ നഗോയാ സര്‍വകലാശാലയില്‍ പ്രൊഫസര്‍മാരാണ്.

ജപ്പാനിലെ ഇകാറ്റയില്‍ 1954 ല്‍ ജനിച്ച നകാമുറ, ടൊകുഷിമ സര്‍വകലാശാലയില്‍നിന്ന് 1994 ലാണ് പി.എച്ച്.ഡി.നേടിയത്. അമേരിക്കയില്‍ സാന്റ ബാര്‍ബറയിലെ കാലിഫോര്‍ണിയ സര്‍വകലാശാലയില്‍ പ്രൊഫസറായ അദ്ദേഹം ഇപ്പോള്‍ യു.എസ്.പൗരനാണ്.

Monday, September 08, 2014

Stephen Hawking warns God particle has potential to 'end world'



London: Stephen Hawking has recently warned that the God particle or Higgs boson has the potential to obliterate the universe.
The 72-year-old cosmologist said Higgs boson could become unstable at very high energy levels, which would lead to a "catastrophic vacuum decay" causing space and time to collapse and that there would not be any warning to the danger, the Daily Express reported.
Speaking in the preface to a new book called Starmus, the Cambridge-educated scientist said that the Higgs potential has the worrisome feature that it might become mega-stable at energies above 100bn giga-electron-volts (GeV).
However, Hawking did also mention that the likelihood of such a disaster was unlikely to happen in the near future, but the danger of the Higgs becoming destabilized at high energy was too great to be ignored.
The Higgs boson was discovered in 2012 by scientists at CERN, who operate the world's largest particle physics laboratory.

Monday, September 01, 2014

NET Physics Coaching - KAS Institute


KAS Institute, 11th Mile Jn., Cherthala 688539

Build your career skills and experience at KAS
JRF/ NET coaching program in Physics for current students, recent post-graduates, repeaters and working professionals.

 The select coaching options at KAS Institute provide unique opportunities for  current students and repeaters  to develop their Physics acumen.  Students from all over Kerala expand their skills in Physics through KAS

Our coaching schedule suits the requirement of many a student

Classes on Saturday, Sunday and Holidays.
Hostel facility for girl students
Professionals and students can master Advances in Physics while strengthening their strategic thinking skills.

Next batch starts on Dec 6, 2014
PH; 9142020185
Mail: kasolaman@gmail.com


Saturday, August 09, 2014

B Voc Courses.

Professional courses and B. Voc Courses Will Be Introduced in Colleges from this year

New Delhi – Hereafter the Job Oriented courses and B Voc Courses will be introduced in the colleges. This scheme will be introduced from this year as the part of national Skill Qualification Frame works. In order to start the courses and for the financial helps, the University Grants Commission (UGC) has invited proposals from eligible universities and colleges recognized for starting B Voc Degree programme . The universities / colleges have to apply before April 15th.
B Voc course will be introduced in about 200 colleges. The courses are divided into ten. The courses includes Automobiles, Entertainment, I.T, Telecommunications, Retail Marketing, Farming, Building Technology, Applied Arts, Tourism, Printing and Publishing. Each of this division will have different branches. The Automobiles will have branches like Engine testing, Vehicle Testing, Auto Electicals and Electonics, Farm Equipment and Machinery. The Entertainment side will have specialisation like Theatre and Stage Crafts, Western Dance, Study in Drama, And Acting. The applied arts has branches like Fashion Technology, Interior Design, Jewellery Design etc. The person who finishes the study of Drama will receive the B Voc degree of theatre studies. Like the Degree course this course also require Plus Two / 12 th standard as the minimum eligibility.
The courses are designed as multiple exits after the completion of the studies after first year. The students who complete one year and exit will receive diploma. One who completes two year and exit will receive Advanced Diploma and the persons who complete three years will receive B Voc degree. The studies will be on the Credit System. The courses will be connected to the existing public education system. This course will also have all the common subject like the the existing Degree courses
K A Solaman

Thursday, June 26, 2014

Science & Maths Club Inauguration-Holy Family Visitation Public School Kattoor.



Holy Family Visitation Public School Kattoor.
Science & Maths Club Inauguration on 23 June 2014
Inaugurated by Prof. K.A Solaman
Seminar Conducted by Dr. Sibi K.S

In an Inaugural Function.

Tuesday, June 24, 2014

അത് ദൈവകണം !

അത് 'ദൈവകണം' തന്നെ
2012 ല്‍ സേണിലെ കണികാപരീക്ഷണത്തില്‍ കണ്ടെത്തിയത് ഹിഗ്ഗ്‌സ് ബോസോണ്‍ തന്നെയെന്നതിന് കൂടുതല്‍ സ്ഥിരീകരണം
http://goo.gl/LJoSqB

Sunday, June 22, 2014

Apple iWatch



Apple iWatch tipped for October launch in various form factors

-K A Solaman 

Monday, June 16, 2014

The tree

The Lorentz transformations






In physics, the Lorentz transformation (or transformations) is named after the Dutch physicist Hendrik Lorentz. It was the result of attempts by Lorentz and others to explain how the speed of light was observed to be independent of the reference frame, and to understand the symmetries of the laws of electromagnetism. The Lorentz transformation is in accordance with special relativity, but was derived before special relativity. The transformations describe how measurements of space and time by two observers are related. They reflect the fact that observers moving at different velocities may measure different distances, elapsed times, and even different orderings of events. They supersede the Galilean transformation of Newtonian physics, which assumes an absolute space and time (see Galilean relativity). The Galilean transformation is a good approximation only at relative speeds much smaller than the speed of light. The Lorentz transformation is a linear transformation. It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space, the Lorentz transformations preserve the spacetime interval between any two events. They describe only the transformations in which the spacetime event at the origin is left fixed, so they can be considered as a hyperbolic rotation of Minkowski space. The more general set of transformations that also includes translations is known as the Poincaré group.

Who is your favourite?

The Universe!

Gravito- electromagnetism

Zero-point energy

What is the 'zero-point energy' (or 'vacuum energy') in quantum physics? Is it really possible that we could harness this energy? SOURCE Scientific American

The Zero Point Energy (ZPE) is an intrinsic and unavoidable part of quantum physics. The ZPE has been studied, both theoretically and experimentally, since the discovery of quantum mechanics in the 1920s and there can be no doubt that the ZPE is a real physical effect. The "vacuum energy" is a specific example of ZPE which has generated considerable doubt and confusion. In a completely empty flat universe, calculations of the vacuum energy yield infinite values of both positive and negative sign--something that obviously does not correspond to the nature of the real world. Observation indicates that in our universe the grand total vacuum energy is extremely small and quite possibly exactly zero. Many theorists suspect that the total vacuum energy is exactly zero. It definitely is possible to manipulate the vacuum energy. Any objects that change the vacuum energy (electrical conductors, dielectrics and gravitational fields, for instance) distort the quantum mechanical vacuum state. These changes in the vacuum energy are often easier to calculate than the total vacuum energy itself. Sometimes we can even measure these changes in the vacuum energy in laboratory experiments. In classical physics, if you have a particle that is acted on by some conservative force, the total energy is E = (1/2) mv2 + V(x). To find the classical ground state, set the velocity to zero to minimize the kinetic energy, (1/2)m v2, and put the particle at the point where it has the lowest potential energy V(x). But this result is only a classical approximation to the real world. Because the classical ground state completely specifies both the particle's speed (zero) and position (at the minimum), it violates the famous Heisenberg Uncertainty Principle (m dv dx > hbar). Quantum physics, via the Uncertainty Principle, forces the particle to spread out both in position and velocity and so causes it to have an energy somewhat higher than the classical minimum. The ZPE is defined as this shift: E(ZPE) = E(quantum minimum) - E(classical minimum) > 0 Classically, we can calculate the natural oscillation frequency that the particle would have if we were to give it a small push. Quantum mechanically, it is now an undergraduate exercise to use the Heisenberg uncertainty relation (more precisely, Schroedinger's differential equation) to show that. E(ZPE) approx. = (1/2) hbar omega0 where hbar is Planck's constant times and omega0 is the natural oscillation frequency. The ZPE in this sense shows up almost everywhere: it affects molecular bonds, condensed matter physics, small oscillations of any system. The next step is to realize that the electromagnetic field can be thought of as an infinite collection of coupled oscillators--one at each point in space. Again, the classical ground state is the case in which the electric and magnetic fields both must be zero. Quantum effects mean that this case does not hold true; there is also a Heisenberg uncertainty principle for electric and magnetic fields (it's a little more complex). The good news is that the potential for electromagnetism is exactly quadratic and so can be solved exactly. The bad news is that there is an infinite number of modes. Formally we can write (Electromagnetic vacuum energy) = sum over all modes (1/2) hbar omega(mode) The infinity in this equation is what excites the free lunch crowd (the modern descendants of the perpetual motion crowd), who envision an endless ZPE for humanity to tap into. Not quite, unfortunately..The first and most obvious problem is that there are other quantum fields in the universe apart from electromagnetism. Electrons, for starters, plus neutrinos, quarks, gluons, W, Z, Higgs and so on. In particular, if you do the calculation for electrons you will find that what are known as Fermi statistics give rise to an extra minus sign in the calculation. Adding minus infinity to plus infinity gives mathematicians nightmares and even makes theoretical physicists worry a little. Fortunately, nature does not worry about what the mathematicians or physicists think and does the job for us automatically. Consider the grand total vacuum energy (once we have added in all quantum fields, all particle interactions, kept everything finite by hook or by crook, and taken all the proper limits at the end of the day). This grand total vacuum energy has another name: it is called the "cosmological constant," and it is something that we can measure observationally. In its original incarnation, the cosmological constant was something that Einstein put into General Relativity (his theory of gravity) by hand. Particle physicists have since taken over this idea and appropriated it for their own by giving it this more physical description in terms of the ZPE and the vacuum energy. Astrophysicists are now busy putting observational limits on the cosmological constant. From the cosmological point of view these limits are still pretty broad: the cosmological constant could potentially provide up to 60 percent to 80 percent of the total mass of the universe. From a particle physics point of view, however, these limits are extremely stringent: the cosmological constant is more than 10(-123) times smaller than one would naively estimate from particle physics equations. The cosmological constant could quite plausibly be exactly zero. (Physicists are still arguing on this point.) Even if the cosmological constant is not zero it is certainly small on a particle-physics scale, small on a human-engineering scale, and too tiny to be any plausible source of energy for human needs--not that we have any good ideas on how to accomplish large-scale manipulations of the cosmological constant anyway.Putting the more exotic fantasies of the free lunch crowd aside, is there anything more plausible that we could use the ZPE for? It turns out that small-scale manipulations of the ZPE are indeed possible. By introducing a conductor or a dielectric, one can affect the electromagnetic field and thus induce changes in the quantum mechanical vacuum, leading to changes in the ZPE. This is what underlies a peculiar physical phenomenon called the Casimir effect. In a classical world, perfectly neutral conductors do not attract one another. In a quantum world, however, the neutral conductors disturb the quantum electromagnetic vacuum and produce finite measurable changes in the energy as the conductors move around. Sometimes we can even calculate the change in energy and compare it with experiment. These effects are all undoubtedly real and uncontroversial but tiny. More controversial is the suggestion, made by the physicist Julian Schwinger, that the ZPE in dielectrics has something to do with sonoluminescence. The jury is still out on this one and there is a lot of polite discussion going on (both among experimentalists, who are unsure of which of the competing mechanisms is the correct one, and among theorists, who still disagree on the precise size and nature of the Casimir effect in dielectrics.) Even more speculative is the suggestion that relates the Casimir effect to "starquakes" on neutron stars and to gamma ray bursts. In summary, there is no doubt that the ZPE, vacuum energy and Casimir effect are physically real. Our ability to manipulate these quantities is limited but in some cases technologically interesting. But the free-lunch crowd has greatly exaggerated the importance of the ZPE. Notions of mining the ZPE should therefore be treated with extreme skepticism. From the way some enthusiasts talk about the zero-point energy, one might think that unlimited power is lying all around just waiting to be harnessed. Like many ideas that seem too good to be true, this one falls apart on closer examination, although the concept of the zero-point energy is quite fascinating in and of itself. John Obienin, a materials science researcher at the University of Nebraska at Omaha, explains: "Zero-point energy refers to random quantum fluctuations of the electromagnetic (and other) force fields that are present everywhere in the vacuum; in other words, an 'empty' vacuum is actually a seething cauldron of energy. This energy is present even at absolute zero temperature (-273 Celsius),and of course, even when no matter is present. The effect of these vacuum fields has been detected just barely--the effect is very tiny--by the attraction they induce in a capacitor, which is really just two close parallel metal plates. This effect is the famous prediction of Hendrick B. G. Casimir (made in 1948); it was very crudely 'confirmed' experimentally by M. J. Sparnaay in 1958. A recent, widely noted experiment by Steven K. Lamoreaux (Physical Review Letters, Vol. 78, No.1, pages. 5-8; January 6, 1997) gave a very precise and unambiguous confirmation of the existence of the Casimir force. "These vacuum fluctuations may have effects, both subtle and gross, on the behavior of microscopic particles and on the world around us. Russian physicist Andrei Sakharov speculated that they may give rise to the force of gravity. At present, nobody knows how to exploit the zero-point energy in a macroscopic device that delivers sizable amounts of energy. There is, however, a considerable fringe element (similar to those attracted to UFOs, astrology, numerology and so on) of people who speculate and fantasize about the possibility of exploiting the zero-point energy to achieve various technical marvels and the long-sought 'perpetual motion.' Consider yourself warned." John Baez is a member of the mathematics faculty at the University of California at Riverside and one of the moderators of the on-line sci.physics.research newsgroup. He adds some context: "The concept of vacuum energy shows up in certain computations in quantum field theory, which is the tool we use to conduct modern particle physics. In reality, particles interact with one another through a variety of forces. This is a complicated business, so in quantum-field theory we start by studying an idealized model in which particles do not interact at all. This is called a 'free-field theory.' Then we use this free-field theory as the basis for studying the 'interacting-field theory' we are really interested in. "In quantum-field theory, the vacuum state is defined to be the state having the least energy density. Something funny happens when we use a free-field theory to study an interacting-field theory: the vacuum state of the free-field theory is different from vacuum state of the interacting-field theory. The vacuum state of the interacting-field theory may have more or less energy than that of the free-field theory; the difference is called the vacuum energy. "One should not take this vacuum energy too literally, however, because the free-field theory is just a mathematical tool to help us understand what we are really interested in: the interacting theory. Only the interacting theory is supposed to correspond directly to reality. Because the vacuum state of the interacting theory is the state of least energy in reality, there is no way to extract the vacuum energy and use it for anything. "It is a bit like this: say a bank found it more convenient (for some strange reason) to start counting at 1,000, so that even when you had no money in the bank, your account read $1,000. You might get excited and try to spend this $1,000, but the bank would say, 'Sorry, that $1,000 is just an artifact of how we do our bookkeeping: you're actually flat broke.' "Similarly, one should not get one's hope up when people talk about vacuum energy. It is just how we do our bookkeeping in quantum field theory. There is much more to say about why we do our bookkeeping this funny way, but I will stop here." Paul A. Deck, assistant professor of chemistry at Virginia Polytechnic Institute and State University, gives a chemical perspective on this question: "The zero-point energy cannot be harnessed in the traditional sense. The idea of zero-point energy is that there is a finite, minimum amount of motion (more accurately, kinetic energy) in all matter, even at absolute zero. For example, chemical bonds continue to vibrate in predictable ways. But releasing the energy of this motion is impossible, because then the molecule would be left with less than the minimum amount that the laws of quantum physics require it to have."

~Herr von Bradford
 — with Upendra Yadav




Conservation of linear momentum


The conservation of momentum is a fundamental concept of physics along with the conservation of energy and the conservation of mass. Momentum is defined to be the mass of an object multiplied by the velocity of the object. The conservation of momentum states that, within some problem domain, the amount of momentum remains constant; momentum is neither created nor destroyed, but only changed through the action of forces as described by Newton's laws of motion. Dealing with momentum is more difficult than dealing with mass and energy because momentum is a vector quantity having both a magnitude and a direction. Momentum is conserved in all three physical directions at the same time. It is even more difficult when dealing with a gas because forces in one direction can affect the momentum in another direction because of the collisions of many molecules. On this slide, we will present a very, very simplified flow problem where properties only change in one direction. The problem is further simplified by considering a steady flow which does not change with time and by limiting the forces to only those associated with the pressure. Be aware that real flow problems are much more complex than this simple example.

Let us consider the flow of a gas through a domain in which flow properties only change in one direction, which we will call "x". The gas enters the domain at station 1 with some velocity u and some pressure p and exits at station 2 with a different value of velocity and pressure. For simplicity, we will assume that the density r remains constant within the domain and that the area A through which the gas flows also remains constant. The location of stations 1 and 2 are separated by a distance called del x. (Delta is the little triangle on the slide and is the Greek letter "d". Mathematicians often use this symbol to denote a change or variation of a quantity. The web print font does not support the Greek letters, so we will just call it "del".) A change with distance is referred to as a gradient to avoid confusion with a change with time which is called a rate. The velocity gradient is indicated by del u / del x; the change in velocity per change in distance. So at station 2, the velocity is given by the velocity at 1 plus the gradient times the distance.

u2 = u1 + (del u / del x) * del x

A similar expression gives the pressure at the exit:

p2 = p1 + (del p / del x) * del x

Newton's second law of motion states that force F is equal to the change in momentum with respect to time. For an object with constant mass m this reduces to the mass times acceleration a. An acceleration is a change in velocity with a change in time (del u / del t). Then:

F = m * a = m * (del u / del t)

The force in this problem comes from the pressure gradient. Since pressure is a force per unit area, the net force on our fluid domain is the pressure times the area at the exit minus the pressure times the area at the entrance.

F = - [(p * A)2 - (p * A)1] = m * [(u2 - u1) / del t]

The minus sign at the beginning of this expression is used because gases move from a region of high pressure to a region of low pressure; if the pressure increases with x, the velocity will decrease. Substituting for our expressions for velocity and pressure:

- [{(p + (del p / del x) * del x} * A) - (p * A)] = m * [(u + (del u / del x) * del x - u) / del t]

Simplify:

- (del p / del x) * del x * A = m * (del u / del x) * del x / del t

Noting that (del x / del t) is the velocity and that the mass is the density r times the volume (area times del x):

- (del p / del x) * del x * A = r * del x * A * (del u / del x) * u

Simplify:

- (del p / del x) = r * u * (del u / del x)

The del p / del x and del u / del x represent the pressure and velocity gradients. If we shrink our domain down to differential sizes, these gradients become differentials:

- dp/dx = r * u * du/dx

This is a one dimensional, steady form of Euler's Equation. It is interesting to note that the pressure drop of a fluid (the term on the left) is proportional to both the value of the velocity and the gradient of the velocity. A solution of this momentum equation gives us the form of the dynamic pressure that appears in Bernoulli's Equation.
SOURCE: http://www.grc.nasa.gov/WWW/k-12/airplane/conmo.html

~Herr von Bradford



Experimental Physicist

Sunday, June 15, 2014

NET Physics Coaching - KAS Institute



KAS Institute, 11th Mile Jn., Cherthala 688539

Build your career skills and experience at KAS
JRF/ NET coaching program in Physics for current students, recent post-graduates, repeaters and working professionals.

 The select coaching options at KAS Institute provide unique opportunities for  current students and repeaters  to develop their Physics acumen.  Students from all over Kerala expand their skills in Physics through KAS

Our coaching schedule suits the requirement of many a student

Classes on Saturday, Sunday and Holidays.
Hostel facility for girl students
Professionals and students can master Advances in Physics while strengthening their strategic thinking skills.

Next batch starts on July 6, 2014
PH; 9142020185
Mail: kasolaman@gmail.com


Monday, June 09, 2014

KAS Institute- CSIR-JRF/NET Physical Science

Photo

CSIR-JRF/NET Physical Science Next Batch  starts at KAS Institute, 11th-Mile Jn,  Cherthala on July 6, 2014
CSIR-UGC-JRF-NET 2013 DEC QN PAPER SOLN

Ph: 9142020185

Wednesday, March 05, 2014

Sunday, January 26, 2014

തമോഗര്‍ത്തങ്ങളേ ഇല്ലെന്ന് സ്റ്റീഫന്‍ ഹോക്കിങ്; അമ്പരപ്പോടെ ശാസ്ത്രലോകം


ലണ്ടന്‍ : പ്രപഞ്ചത്തില്‍ തമോഗര്‍ത്തങ്ങളെ ഇല്ലെന്ന് വിഖ്യാത ശാസ്ത്രജ്ഞന്‍ സ്റ്റീഫന്‍ ഹോക്കിങ്. ആധുനിക തമോഗര്‍ത്ത സിദ്ധാന്തത്തിന്റെ ഉപജ്ഞാതാക്കളിലൊരാളായ ഹോക്കിങിന്റെ ഈ നിഗമനം, ശാസ്ത്രലോകത്തെയാകെ അമ്പരപ്പിച്ചിരിക്കുകയാണ്.

അനന്തമായ ഗുരുത്വാകര്‍ഷണത്താല്‍ പ്രകാശത്തിന് പോലും പുറത്തുകടക്കാനാവാത്ത പ്രാപഞ്ചിക കെണികളായാണ് തമോഗര്‍ത്തം വിഭാവനം ചെയ്യപ്പെട്ടിട്ടുള്ളത്. ആല്‍ബര്‍ട്ട് ഐന്‍സ്റ്റൈന്റെ സാമാന്യ ആപേക്ഷികതാ സിദ്ധാന്തമാണ് ഇതിന് അടിസ്ഥാനം.

ഭീമന്‍ നക്ഷത്രങ്ങള്‍ അവയുടെ അന്ത്യത്തില്‍ തമോഗര്‍ത്തങ്ങളായി മാറുന്നു എന്നാണ് ശാസ്ത്രലോകത്തിന്റെ നിഗമനം. തമോഗര്‍ത്തങ്ങളെ നിലനിര്‍ക്കാന്‍ സഹായിക്കുന്നത് സംഭാവ്യതാ ചക്രവാളമാണ്. ആ ചക്രവാളത്തിനുള്ളില്‍ പെടുന്ന പ്രകാശകണങ്ങള്‍ക്ക് പോലും രക്ഷപ്പെടാനാകില്ല.

എന്നാല്‍, സംഭാവ്യതാ ചക്രവാളം എന്ന സംഗതിയേ ഇല്ലെന്നാണ് ഹോക്കിങ് ഇപ്പോള്‍ പ്രസ്താവിച്ചിരിക്കുന്നത്. സംഭാവ്യതാ ചക്രവാളമില്ലെങ്കില്‍, തമോഗര്‍ത്തവുമില്ല - ഹോക്കിങ് പറയുന്നു.

'താത്ക്കാലികമായി' ദ്രവ്യത്തെയും ഊര്‍ജത്തെയും പിടിച്ചുനിര്‍ത്തുന്ന 'താത്ക്കാലിക ചക്രവാളങ്ങള്‍' മാത്രമേയുള്ളൂ. പിന്നീട് ദ്രവ്യവും ഊര്‍ജവും മോചിപ്പിക്കപ്പെടും - ഹോക്കിങ് പറയുന്നു. അതിനാല്‍, തമോഗര്‍ത്തങ്ങളല്ല; 'തവിട്ടുഗര്‍ത്തങ്ങള്‍' (ഗ്രേ ഹോള്‍സ്) ആണ് പ്രപഞ്ചത്തിലുള്ളതെന്ന് അദ്ദേഹം വാദിക്കുന്നു.

'ആര്‍ക്‌സൈവ്' എന്ന ഓണ്‍ലൈന്‍ ശേഖരത്തില്‍ പ്രസിദ്ധീകരിച്ച പ്രബന്ധത്തിലാണ്, ഏറെ ആകാംക്ഷയുയര്‍ത്തുന്ന പുതിയ നിഗമനം ഹോക്കിങ് മുന്നോട്ടുവെച്ചിട്ടുള്ളത്.

'ഐന്‍സ്‌റ്റൈന്റെ സിദ്ധാന്തമനുസരിച്ച് തമോഗര്‍ത്തത്തില്‍നിന്ന് ഒന്നിനും രക്ഷപ്പെടാനാകില്ല. എന്നാല്‍, ക്വാണ്ടംസിദ്ധാന്തമനുസരിച്ച് ഊര്‍ജത്തിനും വിവരങ്ങള്‍ക്കും തമോഗര്‍ത്തത്തില്‍നിന്ന് രക്ഷപ്പെടാനാകും' - ഹോക്കിങ് ചൂണ്ടിക്കാട്ടി.

ഈ പ്രക്രിയ പൂര്‍ണമായി വിശദീകരിക്കാന്‍, ഗുരുത്വാകര്‍ഷണബലവും പ്രകൃതിയിലെ മറ്റ് മൗലികബലങ്ങളും സംയോജിപ്പിക്കുന്ന സിദ്ധാന്തം ഉണ്ടാകേണ്ടതുണ്ടെന്നും അദ്ദേഹം പറയുന്നു.

സൈദ്ധാന്തി ഭൗതികശാസ്ത്രജ്ഞനായ ജോസഫ് പോള്‍ചിന്‍സ്‌കിയും സംഘവും രണ്ടുവര്‍ഷംമുമ്പ് മുന്നോട്ടുവെച്ച 'ബ്ലാക്ക് ഹോള്‍ ഫയര്‍വാള്‍ പ്രശ്‌നം' പരിഹരിക്കാനുള്ള ശ്രമത്തിന്റെ ഭാഗമായാണ്, സംഭാവ്യതാചക്രവാളം ഇല്ലെന്നും, അതിനാല്‍ തമോഗര്‍ത്തങ്ങളും യാഥാര്‍ഥ്യമല്ലെന്നുമുള്ള നിഗമനത്തില്‍ ഹോക്കിങ് എത്തിയത്.

ഒരു ബഹിരാകാശസഞ്ചാരി തമോഗര്‍ത്തില്‍ പ്രവേശിച്ചാല്‍ എന്തുസംഭവിക്കുമെന്ന് പരിശോധിച്ച പോള്‍ചിന്‍സ്‌കിയും സംഘവും 'ഫയര്‍വാള്‍ പ്രശ്‌ന'ത്തിലെത്തുകയായിരുന്നു.

ഐന്‍സ്‌റ്റൈന്റെ സിദ്ധാന്തമനുസരിച്ച് സംഭാവ്യതാ ചക്രവാളത്തിലൂടെ, അതിഭീമമായ ഗുരുത്വാകര്‍ഷണബലത്താല്‍ തന്നെ കാത്തിരിക്കുന്ന ദുര്‍വിധിയറിയാതെ അയാള്‍ കടന്നുപോകണം. എന്നാല്‍, ക്വാണ്ടംസിദ്ധാന്തം അനുസരിച്ച് സംഭാവ്യതാ ചക്രവാളമെന്നത് വന്‍തോതില്‍ ഊര്‍ജമുള്ള മേഖലയാണെന്നും, അതൊരു ഊര്‍ജഭിത്തി (ഫയര്‍വാള്‍) പോലെ സഞ്ചാരിയെ എരിച്ചുകളയുമെന്നും പോള്‍ചിന്‍സ്‌കിയും സംഘവും കണ്ടു.

ഐന്‍സ്‌റ്റൈന്റെ സിദ്ധാന്തത്തിലെ മൗലികസങ്കല്‍പ്പത്തിന് എതിരാണിത്. രണ്ടുവര്‍ഷമായി ഈ 'ഫയര്‍വാള്‍ പ്രശ്‌നം' പരിഹരിക്കാനുള്ള ശ്രമത്തിലാണ് ശാസ്ത്രലോകം (കടപ്പാട് : nature.com ) 
കമെന്‍റ് : ഇപ്പോള്‍ ഉള്ളതിനെ തമോഗര്‍ത്തങ്ങളെന്ന് വിളിച്ചാല്‍ പോരേ? 
-കെ എ സോളമന്‍ 

ഹൈഡ്രജന്‍ കാറുമായി ടയോട്ട





ഹൈഡ്രജന്‍ കാറുമായി ടയോട്ട വരാനൊരുങ്ങുന്നു. ലാസ്‌വേഗാസില്‍ നടന്ന കണ്‍സ്യൂമര്‍ ഇലക്ട്രോണിക്‌സ് ഷോയിലാണ് ഹൈഡ്രജന്‍കാറുകളുടെ രണ്ട് മോഡലുകള്‍ (Hydrogen fuel cell cars) ടയോട്ട പ്രദര്‍ശിപ്പിച്ചത്. 2015 ല്‍ ഹൈഡ്രജന്‍കാര്‍ നിരത്തിലിറക്കാനാകുമെന്ന് ടയോട്ടയുടെ ഓട്ടോമോട്ടീവ് ഓപ്പറേഷന്‍സ് സീനിയര്‍ വൈസ്പ്രസിഡന്റ് ബോബ് കാര്‍ട്ടര്‍ പറഞ്ഞു. കാലിഫോര്‍ണിയയിലായിരിക്കും ആദ്യത്തെ ലോഞ്ച്.



കാലിഫോര്‍ണിയയില്‍ നൂറ് ഹൈഡ്രജന്‍ഫില്ലിങ് സ്റ്റേഷനുകള്‍ സ്ഥാപിക്കാന്‍ പദ്ധതിയായിട്ടുണ്ട്. കാറിറങ്ങുമ്പോള്‍ ഇന്ധനം നിറയ്ക്കാനുള്ള സൗകര്യവും വേണമെന്നതുകൊണ്ടാണ് തുടക്കം അവിടെയാക്കിയത്. വടക്കേ അമേരിക്കയിലായിരുന്നു ഹൈഡ്രജന്‍ കാറിന്റെ റോഡ് ടെസ്റ്റ്. പത്തുസെക്കന്റു കൊണ്ട് അറുപതുകിലോമീറ്റര്‍ സ്പീഡ് കൈവരിക്കാന്‍ ഹൈഡ്രജന്‍കാറിനാവും. മുഴുവനായും ഇന്ധനം നിറയ്ക്കാന്‍ മൂന്നുമുതല്‍ അഞ്ചുമിനിറ്റുവരെ സമയം മതി. ഒരു തവണ ഇന്ധനം നിറച്ചാല്‍ 482.80 കിലോമീറ്റര്‍ ഓടിക്കാം. ഹൈഡ്രജന്‍കാറിന് ടയോട്ട ഇനിയും പേരിട്ടുകഴിഞ്ഞിട്ടില്ല.


Comment: ഹൈഡ്രജന്‍ കാര്‍ വരട്ടെ, എന്നിട്ടുവേണം ഒരെണ്ണം വാങ്ങാന്‍ !
-കെ എ സോളമന്‍